Aggregated comparison of two numerical variables
AggrSml2NumVar.Rd
Calculating aggregated values for two numerical variables, useful for comparison of the variables
Value
Output of AggrSml2NumVar is a data set of class data.frame. The variables in the data frame are:
- strata
The stratum (if strataVar is given, "1" otherwise)
- Antx
The number of units with x not missing used in the aggregation
- Anty
The number of units with y not missing used in the aggregation
- Sumx
The total of x in the stratum
- Sumy
The total of y in the stratum
- SumxProsAvTotx
The stratum total for x in percent of the population total for x: (Sumx / Totx) * 100
- SumyProsAvToty
The stratum total for y in percent of the population total for y: (Sumy / Toty) * 100
- Diff
The difference between the stratum totales of x and y: Sumy - Sumx
- AbsDiff
The absolute difference: |Diff|
- DiffProsAvSumx
The difference in percent of the stratum total for x: (Diff / Sumx) * 100
- AbsDiffProsAvSumx
The absolute value of DiffProsAvSumx: |DiffProsAvSumx|
- DiffProsAvTotx
The difference in percent of the population total for x: (Diff / Totx) * 100
- AbsDiffProsAvTotx
The absolute value of DiffProsAvTotx: |DiffProsAvTotx|
Examples
testdata <- KostraData("testdata")
# lager en grupperingsvariabel
testdata$gr <- c(rep(3, 30), rep(5, 40), rep(1, 61), rep(2, 91), rep(3, 68), rep(4, 61),
rep(5, 45), rep(4, 20))
AggrSml2NumVar(data = testdata, xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
strataVar = "gr", identiske = FALSE)
#> strata Antx Anty Sumx Sumy SumxProsAvTotx SumyProsAvToty Diff AbsDiff
#> 1 1 60 58 265113 277433 15.65571 16.46214 12320 12320
#> 2 2 88 83 409114 405354 24.15940 24.05263 -3760 3760
#> 3 3 94 90 379841 359889 22.43074 21.35486 -19952 19952
#> 4 4 80 76 281728 284055 16.63687 16.85507 2327 2327
#> 5 5 82 79 357599 358548 21.11728 21.27529 949 949
#> DiffProsAvSumx AbsDiffProsAvSumx DiffProsAvTotx AbsDiffProsAvTotx
#> 1 4.6470750 4.6470750 0.72753256 0.72753256
#> 2 -0.9190592 0.9190592 -0.22203916 0.22203916
#> 3 -5.2527242 5.2527242 -1.17822481 1.17822481
#> 4 0.8259740 0.8259740 0.13741626 0.13741626
#> 5 0.2653811 0.2653811 0.05604127 0.05604127