Skip to contents

Calculating rank and share for two numerical variables, and the ratio between the variables Listing big units, either the k biggest units or units with value greater than a threshold

Usage

Rank2NumVar(
  data,
  idVar,
  xVar,
  yVar,
  strataVar = NULL,
  antall = 5,
  grense = NULL,
  identiske = FALSE
)

Arguments

data

Input data set of class data.frame.

idVar

Name of an identification variable.

xVar

Name of the x variable to be compared.

yVar

Name of the y variable to be compared.

strataVar

Name of stratification variable. Optional. If strataVar is given, the calculation and listing is performed within each stratum.

antall

Parameter specifying how many of the biggest units to be listed. Default 5.

grense

Parameter specifying a threshold for the units to be listed. This parameter overrules antall. Optional.

identiske

When TRUE, only units with value on both x and y are used in the calculations. Default FALSE.

Value

Output of Rank2NumVar is a data set of class data.frame. The variables in the data frame are:

id

The input identification variable

x

The input x variable

y

The input y variable

strata

The input strata variable if strataVar is given, "1" otherwise

forh

The ratio between x and y: y/x

xRank

The rank of x

yRank

The rank of y

xProsAvSumx

x in percent of the total/stratum total for x

yProsAvSumy

y in percent of the total/stratum total for y

Author

Anna Mevik

Examples

testdata <- KostraData("testdata")

# lager en grupperingsvariabel
testdata$gr <- as.character(c(rep(3, 30), rep(5, 40), rep(1, 61), rep(2, 91), rep(3, 68),
                              rep(4, 61), rep(5, 45),  rep(4, 20)))

# uten strata
Rank2NumVar(data = testdata, idVar = "Region", xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
            strataVar = NULL, antall = 10, grense = NULL, identiske = FALSE)
#>        id     x     y strata      forh xRank yRank xProsAvSumx yProsAvSumy
#> 1  120100 50336 50336      1 1.0000000     1     1   2.9724902   2.9868052
#> 2  110200 24000 33029      1 1.3762083     4     2   1.4172712   1.9598535
#> 3   21900 28000 28015      1 1.0005357     2     3   1.6534831   1.6623360
#> 4   10600 25306 25306      1 1.0000000     3     4   1.4943944   1.5015911
#> 5  112000 12141 22815      1 1.8791698    22     5   0.7169621   1.3537818
#> 6  100100 21802 21802      1 1.0000000     5     6   1.2874728   1.2936730
#> 7   23100 21518 21518      1 1.0000000     6     7   1.2707018   1.2768212
#> 8   62400 19400 19400      1 1.0000000     7     8   1.1456276   1.1511447
#> 9  190200 10765 19292      1 1.7921040    30     9   0.6357052   1.1447363
#> 10 110300 19132 18953      1 0.9906439     8    10   1.1298014   1.1246209
#> 11  80500 17376 16941      1 0.9749655     9    11   1.0261044   1.0052341
#> 12  22000 16708 16708      1 1.0000000    10    13   0.9866570   0.9914085

# med strata
Rank2NumVar(data = testdata, idVar = "Region", xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
            strataVar = "gr", antall = 10, grense = NULL, identiske = FALSE)
#>        id     x     y strata      forh xRank yRank xProsAvSumx yProsAvSumy
#> 1   62400 19400 19400      1 1.0000000     1     1    7.317634    6.992679
#> 2   80500 17376 16941      1 0.9749655     2     2    6.554186    6.106339
#> 3   60400     0 14677      1       Inf    59     3    0.000000    5.290286
#> 4   70100  6969 13646      1 1.9581002    10     4    2.628690    4.918665
#> 5   70600  9946 10255      1 1.0310678     3     5    3.751608    3.696388
#> 6   60500  9306  9126      1 0.9806576     4     6    3.510201    3.289443
#> 7   80600  8977  8977      1 1.0000000     5     7    3.386103    3.235736
#> 8   81400  8126  8126      1 1.0000000     6     8    3.065108    2.928995
#> 9   52800  7626  7626      1 1.0000000     7     9    2.876509    2.748772
#> 10  61700  6936  6936      1 1.0000000    11    10    2.616243    2.500063
#> 11  80700  7500  6030      1 0.8040000     8    14    2.828982    2.173498
#> 12  62500  7128  5066      1 0.7107183     9    20    2.688665    1.826026
#> 13 120100 50336 50336      2 1.0000000     1     1   12.303661   12.417788
#> 14 110200 24000 33029      2 1.3762083     2     2    5.866336    8.148187
#> 15 112000 12141 22815      2 1.8791698     6     3    2.967632    5.628414
#> 16 100100 21802 21802      2 1.0000000     3     4    5.329077    5.378509
#> 17 110300 19132 18953      2 0.9906439     4     5    4.676447    4.675666
#> 18 112400 14371 12100      2 0.8419734     5     6    3.512713    2.985045
#> 19 111900  5727  9645      2 1.6841278    17     7    1.399854    2.379402
#> 20 124700 11732  9399      2 0.8011422     7     8    2.867660    2.318714
#> 21 110600  8499  8499      2 1.0000000     9     9    2.077416    2.096686
#> 22 123500  7161  7161      2 1.0000000    12    10    1.750368    1.766604
#> 23 112100 11195  5510      2 0.4921840     8    18    2.736401    1.359306
#> 24 124600  8456    NA      2        NA    10    NA    2.066906          NA
#> 25  21900 28000 28015      3 1.0005357     1     1    7.371505    7.784345
#> 26  10600 25306 25306      3 1.0000000     2     2    6.662261    7.031613
#> 27  22000 16708 16708      3 1.0000000     3     3    4.398683    4.642543
#> 28  10500 16299 16287      3 0.9992638     4     4    4.291006    4.525562
#> 29  21700 14450 14450      3 1.0000000     5     5    3.804223    4.015127
#> 30 160100 14026 14022      3 0.9997148     6     6    3.692598    3.896201
#> 31  22100  7950  7950      3 1.0000000     9     7    2.092981    2.209014
#> 32 143200  8630  7685      3 0.8904983     8     8    2.272003    2.135381
#> 33 140100  7279  7279      3 1.0000000    12     9    1.916328    2.022568
#> 34  21300  7626  7226      3 0.9475479    11    10    2.007682    2.007841
#> 35  13600 10562  5648      3 0.5347472     7    13    2.780637    1.569373
#> 36 150500  7660  5040      3 0.6579634    10    17    2.016633    1.400432
#> 37 180400 15406 15448      4 1.0027262     1     1    5.468395    5.438383
#> 38 180500 15208 15208      4 1.0000000     2     2    5.398114    5.353893
#> 39 200400 10568 13690      4 1.2954201     7     3    3.751136    4.819489
#> 40 172100 12600 12600      4 1.0000000     3     4    4.472399    4.435761
#> 41 170200 12200 12209      4 1.0007377     4     5    4.330418    4.298111
#> 42 201200 10860 10860      4 1.0000000     5     6    3.854782    3.823203
#> 43 171900 10730 10726      4 0.9996272     6     7    3.808638    3.776029
#> 44 182400  8200  8200      4 1.0000000     8     8    2.910609    2.886765
#> 45 175100    NA  8000      4        NA    NA     9          NA    2.816356
#> 46 171400  7495  7495      4 1.0000000     9    10    2.660367    2.638574
#> 47 165300  7100  7100      4 1.0000000    10    11    2.520161    2.499516
#> 48  23100 21518 21518      5 1.0000000     1     1    6.017355    6.001428
#> 49 190200 10765 19292      5 1.7921040     9     2    3.010355    5.380591
#> 50  23500 11878 16748      5 1.4100017     5     3    3.321598    4.671062
#> 51  42700 16127 15973      5 0.9904508     2     4    4.509800    4.454913
#> 52  23000 15531 13287      5 0.8555148     3     5    4.343133    3.705780
#> 53 190300 12229 12229      5 1.0000000     4     6    3.419752    3.410701
#> 54  50200 11379 11379      5 1.0000000     6     7    3.182056    3.173634
#> 55  41200 11316 11316      5 1.0000000     7     8    3.164438    3.156063
#> 56  30100  9861  9881      5 1.0020282    10     9    2.757558    2.755837
#> 57  50100  8724  8724      5 1.0000000    12    10    2.439604    2.433147
#> 58  40300 11234  3739      5 0.3328289     8    32    3.141508    1.042817

# med identiske = TRUE
Rank2NumVar(data = testdata, idVar = "Region", xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
            strataVar = "gr", antall = 10, grense = NULL, identiske = TRUE)
#>        id     x     y strata      forh xRank yRank xProsAvSumx yProsAvSumy
#> 1   62400 19400 19400      1 1.0000000     1     1    7.398509    6.992679
#> 2   80500 17376 16941      1 0.9749655     2     2    6.626623    6.106339
#> 3   60400     0 14677      1       Inf    58     3    0.000000    5.290286
#> 4   70100  6969 13646      1 1.9581002    10     4    2.657743    4.918665
#> 5   70600  9946 10255      1 1.0310678     3     5    3.793071    3.696388
#> 6   60500  9306  9126      1 0.9806576     4     6    3.548996    3.289443
#> 7   80600  8977  8977      1 1.0000000     5     7    3.423526    3.235736
#> 8   81400  8126  8126      1 1.0000000     6     8    3.098984    2.928995
#> 9   52800  7626  7626      1 1.0000000     7     9    2.908300    2.748772
#> 10  61700  6936  6936      1 1.0000000    11    10    2.645158    2.500063
#> 11  80700  7500  6030      1 0.8040000     8    14    2.860248    2.173498
#> 12  62500  7128  5066      1 0.7107183     9    20    2.718380    1.826026
#> 13 120100 50336 50336      2 1.0000000     1     1   12.771194   12.417788
#> 14 110200 24000 33029      2 1.3762083     2     2    6.089253    8.148187
#> 15 112000 12141 22815      2 1.8791698     6     3    3.080401    5.628414
#> 16 100100 21802 21802      2 1.0000000     3     4    5.531579    5.378509
#> 17 110300 19132 18953      2 0.9906439     4     5    4.854150    4.675666
#> 18 112400 14371 12100      2 0.8419734     5     6    3.646194    2.985045
#> 19 111900  5727  9645      2 1.6841278    16     7    1.453048    2.379402
#> 20 124700 11732  9399      2 0.8011422     7     8    2.976630    2.318714
#> 21 110600  8499  8499      2 1.0000000     9     9    2.156357    2.096686
#> 22 123500  7161  7161      2 1.0000000    11    10    1.816881    1.766604
#> 23 101700  7682  5926      2 0.7714137    10    16    1.949068    1.461932
#> 24 112100 11195  5510      2 0.4921840     8    18    2.840383    1.359306
#> 25  21900 28000 28015      3 1.0005357     1     1    7.501775    7.784345
#> 26  10600 25306 25306      3 1.0000000     2     2    6.779997    7.031613
#> 27  22000 16708 16708      3 1.0000000     3     3    4.476416    4.642543
#> 28  10500 16299 16287      3 0.9992638     4     4    4.366837    4.525562
#> 29  21700 14450 14450      3 1.0000000     5     5    3.871452    4.015127
#> 30 160100 14026 14022      3 0.9997148     6     6    3.757853    3.896201
#> 31  22100  7950  7950      3 1.0000000     9     7    2.129968    2.209014
#> 32 143200  8630  7685      3 0.8904983     8     8    2.312154    2.135381
#> 33 140100  7279  7279      3 1.0000000    12     9    1.950194    2.022568
#> 34  21300  7626  7226      3 0.9475479    11    10    2.043162    2.007841
#> 35  13600 10562  5648      3 0.5347472     7    13    2.829777    1.569373
#> 36 150500  7660  5040      3 0.6579634    10    17    2.052271    1.400432
#> 37 180400 15406 15448      4 1.0027262     1     1    5.638865    5.595986
#> 38 180500 15208 15208      4 1.0000000     2     2    5.566394    5.509047
#> 39 200400 10568 13690      4 1.2954201     7     3    3.868073    4.959157
#> 40 172100 12600 12600      4 1.0000000     3     4    4.611820    4.564308
#> 41 170200 12200 12209      4 1.0007377     4     5    4.465413    4.422669
#> 42 201200 10860 10860      4 1.0000000     5     6    3.974950    3.933999
#> 43 171900 10730 10726      4 0.9996272     6     7    3.927367    3.885458
#> 44 182400  8200  8200      4 1.0000000     8     8    3.001343    2.970423
#> 45 171400  7495  7495      4 1.0000000     9     9    2.743301    2.715039
#> 46 165300  7100  7100      4 1.0000000    10    10    2.598724    2.571951
#> 47  23100 21518 21518      5 1.0000000     1     1    6.227967    6.111992
#> 48 190200 10765 19292      5 1.7921040     9     2    3.115720    5.479717
#> 49  23500 11878 16748      5 1.4100017     5     3    3.437856    4.757117
#> 50  42700 16127 15973      5 0.9904508     2     4    4.667647    4.536985
#> 51  23000 15531 13287      5 0.8555148     3     5    4.495146    3.774051
#> 52 190300 12229 12229      5 1.0000000     4     6    3.539446    3.473536
#> 53  50200 11379 11379      5 1.0000000     6     7    3.293431    3.232101
#> 54  41200 11316 11316      5 1.0000000     7     8    3.275196    3.214207
#> 55  30100  9861  9881      5 1.0020282    10     9    2.854075    2.806608
#> 56  50100  8724  8724      5 1.0000000    12    10    2.524992    2.477973
#> 57  40300 11234  3739      5 0.3328289     8    32    3.251463    1.062029

# med grense (overstyrer antall)
Rank2NumVar(data = testdata, idVar = "Region", xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
            strataVar = "gr", antall = 10, grense = 10000, identiske = FALSE)
#>        id     x     y strata      forh xRank yRank xProsAvSumx yProsAvSumy
#> 1   62400 19400 19400      1 1.0000000     1     1    7.317634    6.992679
#> 2   80500 17376 16941      1 0.9749655     2     2    6.554186    6.106339
#> 3   60400     0 14677      1       Inf    59     3    0.000000    5.290286
#> 4   70100  6969 13646      1 1.9581002    10     4    2.628690    4.918665
#> 5   70600  9946 10255      1 1.0310678     3     5    3.751608    3.696388
#> 6  120100 50336 50336      2 1.0000000     1     1   12.303661   12.417788
#> 7  110200 24000 33029      2 1.3762083     2     2    5.866336    8.148187
#> 8  112000 12141 22815      2 1.8791698     6     3    2.967632    5.628414
#> 9  100100 21802 21802      2 1.0000000     3     4    5.329077    5.378509
#> 10 110300 19132 18953      2 0.9906439     4     5    4.676447    4.675666
#> 11 112400 14371 12100      2 0.8419734     5     6    3.512713    2.985045
#> 12 124700 11732  9399      2 0.8011422     7     8    2.867660    2.318714
#> 13 112100 11195  5510      2 0.4921840     8    18    2.736401    1.359306
#> 14  21900 28000 28015      3 1.0005357     1     1    7.371505    7.784345
#> 15  10600 25306 25306      3 1.0000000     2     2    6.662261    7.031613
#> 16  22000 16708 16708      3 1.0000000     3     3    4.398683    4.642543
#> 17  10500 16299 16287      3 0.9992638     4     4    4.291006    4.525562
#> 18  21700 14450 14450      3 1.0000000     5     5    3.804223    4.015127
#> 19 160100 14026 14022      3 0.9997148     6     6    3.692598    3.896201
#> 20  13600 10562  5648      3 0.5347472     7    13    2.780637    1.569373
#> 21 180400 15406 15448      4 1.0027262     1     1    5.468395    5.438383
#> 22 180500 15208 15208      4 1.0000000     2     2    5.398114    5.353893
#> 23 200400 10568 13690      4 1.2954201     7     3    3.751136    4.819489
#> 24 172100 12600 12600      4 1.0000000     3     4    4.472399    4.435761
#> 25 170200 12200 12209      4 1.0007377     4     5    4.330418    4.298111
#> 26 201200 10860 10860      4 1.0000000     5     6    3.854782    3.823203
#> 27 171900 10730 10726      4 0.9996272     6     7    3.808638    3.776029
#> 28  23100 21518 21518      5 1.0000000     1     1    6.017355    6.001428
#> 29 190200 10765 19292      5 1.7921040     9     2    3.010355    5.380591
#> 30  23500 11878 16748      5 1.4100017     5     3    3.321598    4.671062
#> 31  42700 16127 15973      5 0.9904508     2     4    4.509800    4.454913
#> 32  23000 15531 13287      5 0.8555148     3     5    4.343133    3.705780
#> 33 190300 12229 12229      5 1.0000000     4     6    3.419752    3.410701
#> 34  50200 11379 11379      5 1.0000000     6     7    3.182056    3.173634
#> 35  41200 11316 11316      5 1.0000000     7     8    3.164438    3.156063
#> 36  40300 11234  3739      5 0.3328289     8    32    3.141508    1.042817