Comparing the biggest units with respect to two numerical variables
Rank2NumVar.RdCalculating rank and share for two numerical variables, and the ratio between the variables Listing big units, either the k biggest units or units with value greater than a threshold
Usage
Rank2NumVar(
  data,
  idVar,
  xVar,
  yVar,
  strataVar = NULL,
  antall = 5,
  grense = NULL,
  identiske = FALSE
)Arguments
- data
 Input data set of class data.frame.
- idVar
 Name of an identification variable.
- xVar
 Name of the x variable to be compared.
- yVar
 Name of the y variable to be compared.
- strataVar
 Name of stratification variable. Optional. If strataVar is given, the calculation and listing is performed within each stratum.
- antall
 Parameter specifying how many of the biggest units to be listed. Default 5.
- grense
 Parameter specifying a threshold for the units to be listed. This parameter overrules antall. Optional.
- identiske
 When TRUE, only units with value on both x and y are used in the calculations. Default FALSE.
Value
Output of Rank2NumVar is a data set of class data.frame. The variables in the data frame are:
- id
 The input identification variable
- x
 The input x variable
- y
 The input y variable
- strata
 The input strata variable if strataVar is given, "1" otherwise
- forh
 The ratio between x and y: y/x
- xRank
 The rank of x
- yRank
 The rank of y
- xProsAvSumx
 x in percent of the total/stratum total for x
- yProsAvSumy
 y in percent of the total/stratum total for y
Examples
testdata <- KostraData("testdata")
# lager en grupperingsvariabel
testdata$gr <- as.character(c(rep(3, 30), rep(5, 40), rep(1, 61), rep(2, 91), rep(3, 68),
                              rep(4, 61), rep(5, 45),  rep(4, 20)))
# uten strata
Rank2NumVar(data = testdata, idVar = "Region", xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
            strataVar = NULL, antall = 10, grense = NULL, identiske = FALSE)
#>        id     x     y strata      forh xRank yRank xProsAvSumx yProsAvSumy
#> 1  120100 50336 50336      1 1.0000000     1     1   2.9724902   2.9868052
#> 2  110200 24000 33029      1 1.3762083     4     2   1.4172712   1.9598535
#> 3   21900 28000 28015      1 1.0005357     2     3   1.6534831   1.6623360
#> 4   10600 25306 25306      1 1.0000000     3     4   1.4943944   1.5015911
#> 5  112000 12141 22815      1 1.8791698    22     5   0.7169621   1.3537818
#> 6  100100 21802 21802      1 1.0000000     5     6   1.2874728   1.2936730
#> 7   23100 21518 21518      1 1.0000000     6     7   1.2707018   1.2768212
#> 8   62400 19400 19400      1 1.0000000     7     8   1.1456276   1.1511447
#> 9  190200 10765 19292      1 1.7921040    30     9   0.6357052   1.1447363
#> 10 110300 19132 18953      1 0.9906439     8    10   1.1298014   1.1246209
#> 11  80500 17376 16941      1 0.9749655     9    11   1.0261044   1.0052341
#> 12  22000 16708 16708      1 1.0000000    10    13   0.9866570   0.9914085
# med strata
Rank2NumVar(data = testdata, idVar = "Region", xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
            strataVar = "gr", antall = 10, grense = NULL, identiske = FALSE)
#>        id     x     y strata      forh xRank yRank xProsAvSumx yProsAvSumy
#> 1   62400 19400 19400      1 1.0000000     1     1    7.317634    6.992679
#> 2   80500 17376 16941      1 0.9749655     2     2    6.554186    6.106339
#> 3   60400     0 14677      1       Inf    59     3    0.000000    5.290286
#> 4   70100  6969 13646      1 1.9581002    10     4    2.628690    4.918665
#> 5   70600  9946 10255      1 1.0310678     3     5    3.751608    3.696388
#> 6   60500  9306  9126      1 0.9806576     4     6    3.510201    3.289443
#> 7   80600  8977  8977      1 1.0000000     5     7    3.386103    3.235736
#> 8   81400  8126  8126      1 1.0000000     6     8    3.065108    2.928995
#> 9   52800  7626  7626      1 1.0000000     7     9    2.876509    2.748772
#> 10  61700  6936  6936      1 1.0000000    11    10    2.616243    2.500063
#> 11  80700  7500  6030      1 0.8040000     8    14    2.828982    2.173498
#> 12  62500  7128  5066      1 0.7107183     9    20    2.688665    1.826026
#> 13 120100 50336 50336      2 1.0000000     1     1   12.303661   12.417788
#> 14 110200 24000 33029      2 1.3762083     2     2    5.866336    8.148187
#> 15 112000 12141 22815      2 1.8791698     6     3    2.967632    5.628414
#> 16 100100 21802 21802      2 1.0000000     3     4    5.329077    5.378509
#> 17 110300 19132 18953      2 0.9906439     4     5    4.676447    4.675666
#> 18 112400 14371 12100      2 0.8419734     5     6    3.512713    2.985045
#> 19 111900  5727  9645      2 1.6841278    17     7    1.399854    2.379402
#> 20 124700 11732  9399      2 0.8011422     7     8    2.867660    2.318714
#> 21 110600  8499  8499      2 1.0000000     9     9    2.077416    2.096686
#> 22 123500  7161  7161      2 1.0000000    12    10    1.750368    1.766604
#> 23 112100 11195  5510      2 0.4921840     8    18    2.736401    1.359306
#> 24 124600  8456    NA      2        NA    10    NA    2.066906          NA
#> 25  21900 28000 28015      3 1.0005357     1     1    7.371505    7.784345
#> 26  10600 25306 25306      3 1.0000000     2     2    6.662261    7.031613
#> 27  22000 16708 16708      3 1.0000000     3     3    4.398683    4.642543
#> 28  10500 16299 16287      3 0.9992638     4     4    4.291006    4.525562
#> 29  21700 14450 14450      3 1.0000000     5     5    3.804223    4.015127
#> 30 160100 14026 14022      3 0.9997148     6     6    3.692598    3.896201
#> 31  22100  7950  7950      3 1.0000000     9     7    2.092981    2.209014
#> 32 143200  8630  7685      3 0.8904983     8     8    2.272003    2.135381
#> 33 140100  7279  7279      3 1.0000000    12     9    1.916328    2.022568
#> 34  21300  7626  7226      3 0.9475479    11    10    2.007682    2.007841
#> 35  13600 10562  5648      3 0.5347472     7    13    2.780637    1.569373
#> 36 150500  7660  5040      3 0.6579634    10    17    2.016633    1.400432
#> 37 180400 15406 15448      4 1.0027262     1     1    5.468395    5.438383
#> 38 180500 15208 15208      4 1.0000000     2     2    5.398114    5.353893
#> 39 200400 10568 13690      4 1.2954201     7     3    3.751136    4.819489
#> 40 172100 12600 12600      4 1.0000000     3     4    4.472399    4.435761
#> 41 170200 12200 12209      4 1.0007377     4     5    4.330418    4.298111
#> 42 201200 10860 10860      4 1.0000000     5     6    3.854782    3.823203
#> 43 171900 10730 10726      4 0.9996272     6     7    3.808638    3.776029
#> 44 182400  8200  8200      4 1.0000000     8     8    2.910609    2.886765
#> 45 175100    NA  8000      4        NA    NA     9          NA    2.816356
#> 46 171400  7495  7495      4 1.0000000     9    10    2.660367    2.638574
#> 47 165300  7100  7100      4 1.0000000    10    11    2.520161    2.499516
#> 48  23100 21518 21518      5 1.0000000     1     1    6.017355    6.001428
#> 49 190200 10765 19292      5 1.7921040     9     2    3.010355    5.380591
#> 50  23500 11878 16748      5 1.4100017     5     3    3.321598    4.671062
#> 51  42700 16127 15973      5 0.9904508     2     4    4.509800    4.454913
#> 52  23000 15531 13287      5 0.8555148     3     5    4.343133    3.705780
#> 53 190300 12229 12229      5 1.0000000     4     6    3.419752    3.410701
#> 54  50200 11379 11379      5 1.0000000     6     7    3.182056    3.173634
#> 55  41200 11316 11316      5 1.0000000     7     8    3.164438    3.156063
#> 56  30100  9861  9881      5 1.0020282    10     9    2.757558    2.755837
#> 57  50100  8724  8724      5 1.0000000    12    10    2.439604    2.433147
#> 58  40300 11234  3739      5 0.3328289     8    32    3.141508    1.042817
# med identiske = TRUE
Rank2NumVar(data = testdata, idVar = "Region", xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
            strataVar = "gr", antall = 10, grense = NULL, identiske = TRUE)
#>        id     x     y strata      forh xRank yRank xProsAvSumx yProsAvSumy
#> 1   62400 19400 19400      1 1.0000000     1     1    7.398509    6.992679
#> 2   80500 17376 16941      1 0.9749655     2     2    6.626623    6.106339
#> 3   60400     0 14677      1       Inf    58     3    0.000000    5.290286
#> 4   70100  6969 13646      1 1.9581002    10     4    2.657743    4.918665
#> 5   70600  9946 10255      1 1.0310678     3     5    3.793071    3.696388
#> 6   60500  9306  9126      1 0.9806576     4     6    3.548996    3.289443
#> 7   80600  8977  8977      1 1.0000000     5     7    3.423526    3.235736
#> 8   81400  8126  8126      1 1.0000000     6     8    3.098984    2.928995
#> 9   52800  7626  7626      1 1.0000000     7     9    2.908300    2.748772
#> 10  61700  6936  6936      1 1.0000000    11    10    2.645158    2.500063
#> 11  80700  7500  6030      1 0.8040000     8    14    2.860248    2.173498
#> 12  62500  7128  5066      1 0.7107183     9    20    2.718380    1.826026
#> 13 120100 50336 50336      2 1.0000000     1     1   12.771194   12.417788
#> 14 110200 24000 33029      2 1.3762083     2     2    6.089253    8.148187
#> 15 112000 12141 22815      2 1.8791698     6     3    3.080401    5.628414
#> 16 100100 21802 21802      2 1.0000000     3     4    5.531579    5.378509
#> 17 110300 19132 18953      2 0.9906439     4     5    4.854150    4.675666
#> 18 112400 14371 12100      2 0.8419734     5     6    3.646194    2.985045
#> 19 111900  5727  9645      2 1.6841278    16     7    1.453048    2.379402
#> 20 124700 11732  9399      2 0.8011422     7     8    2.976630    2.318714
#> 21 110600  8499  8499      2 1.0000000     9     9    2.156357    2.096686
#> 22 123500  7161  7161      2 1.0000000    11    10    1.816881    1.766604
#> 23 101700  7682  5926      2 0.7714137    10    16    1.949068    1.461932
#> 24 112100 11195  5510      2 0.4921840     8    18    2.840383    1.359306
#> 25  21900 28000 28015      3 1.0005357     1     1    7.501775    7.784345
#> 26  10600 25306 25306      3 1.0000000     2     2    6.779997    7.031613
#> 27  22000 16708 16708      3 1.0000000     3     3    4.476416    4.642543
#> 28  10500 16299 16287      3 0.9992638     4     4    4.366837    4.525562
#> 29  21700 14450 14450      3 1.0000000     5     5    3.871452    4.015127
#> 30 160100 14026 14022      3 0.9997148     6     6    3.757853    3.896201
#> 31  22100  7950  7950      3 1.0000000     9     7    2.129968    2.209014
#> 32 143200  8630  7685      3 0.8904983     8     8    2.312154    2.135381
#> 33 140100  7279  7279      3 1.0000000    12     9    1.950194    2.022568
#> 34  21300  7626  7226      3 0.9475479    11    10    2.043162    2.007841
#> 35  13600 10562  5648      3 0.5347472     7    13    2.829777    1.569373
#> 36 150500  7660  5040      3 0.6579634    10    17    2.052271    1.400432
#> 37 180400 15406 15448      4 1.0027262     1     1    5.638865    5.595986
#> 38 180500 15208 15208      4 1.0000000     2     2    5.566394    5.509047
#> 39 200400 10568 13690      4 1.2954201     7     3    3.868073    4.959157
#> 40 172100 12600 12600      4 1.0000000     3     4    4.611820    4.564308
#> 41 170200 12200 12209      4 1.0007377     4     5    4.465413    4.422669
#> 42 201200 10860 10860      4 1.0000000     5     6    3.974950    3.933999
#> 43 171900 10730 10726      4 0.9996272     6     7    3.927367    3.885458
#> 44 182400  8200  8200      4 1.0000000     8     8    3.001343    2.970423
#> 45 171400  7495  7495      4 1.0000000     9     9    2.743301    2.715039
#> 46 165300  7100  7100      4 1.0000000    10    10    2.598724    2.571951
#> 47  23100 21518 21518      5 1.0000000     1     1    6.227967    6.111992
#> 48 190200 10765 19292      5 1.7921040     9     2    3.115720    5.479717
#> 49  23500 11878 16748      5 1.4100017     5     3    3.437856    4.757117
#> 50  42700 16127 15973      5 0.9904508     2     4    4.667647    4.536985
#> 51  23000 15531 13287      5 0.8555148     3     5    4.495146    3.774051
#> 52 190300 12229 12229      5 1.0000000     4     6    3.539446    3.473536
#> 53  50200 11379 11379      5 1.0000000     6     7    3.293431    3.232101
#> 54  41200 11316 11316      5 1.0000000     7     8    3.275196    3.214207
#> 55  30100  9861  9881      5 1.0020282    10     9    2.854075    2.806608
#> 56  50100  8724  8724      5 1.0000000    12    10    2.524992    2.477973
#> 57  40300 11234  3739      5 0.3328289     8    32    3.251463    1.062029
# med grense (overstyrer antall)
Rank2NumVar(data = testdata, idVar = "Region", xVar = "areal_130_eier_2014", yVar = "areal_130_eier_2015",
            strataVar = "gr", antall = 10, grense = 10000, identiske = FALSE)
#>        id     x     y strata      forh xRank yRank xProsAvSumx yProsAvSumy
#> 1   62400 19400 19400      1 1.0000000     1     1    7.317634    6.992679
#> 2   80500 17376 16941      1 0.9749655     2     2    6.554186    6.106339
#> 3   60400     0 14677      1       Inf    59     3    0.000000    5.290286
#> 4   70100  6969 13646      1 1.9581002    10     4    2.628690    4.918665
#> 5   70600  9946 10255      1 1.0310678     3     5    3.751608    3.696388
#> 6  120100 50336 50336      2 1.0000000     1     1   12.303661   12.417788
#> 7  110200 24000 33029      2 1.3762083     2     2    5.866336    8.148187
#> 8  112000 12141 22815      2 1.8791698     6     3    2.967632    5.628414
#> 9  100100 21802 21802      2 1.0000000     3     4    5.329077    5.378509
#> 10 110300 19132 18953      2 0.9906439     4     5    4.676447    4.675666
#> 11 112400 14371 12100      2 0.8419734     5     6    3.512713    2.985045
#> 12 124700 11732  9399      2 0.8011422     7     8    2.867660    2.318714
#> 13 112100 11195  5510      2 0.4921840     8    18    2.736401    1.359306
#> 14  21900 28000 28015      3 1.0005357     1     1    7.371505    7.784345
#> 15  10600 25306 25306      3 1.0000000     2     2    6.662261    7.031613
#> 16  22000 16708 16708      3 1.0000000     3     3    4.398683    4.642543
#> 17  10500 16299 16287      3 0.9992638     4     4    4.291006    4.525562
#> 18  21700 14450 14450      3 1.0000000     5     5    3.804223    4.015127
#> 19 160100 14026 14022      3 0.9997148     6     6    3.692598    3.896201
#> 20  13600 10562  5648      3 0.5347472     7    13    2.780637    1.569373
#> 21 180400 15406 15448      4 1.0027262     1     1    5.468395    5.438383
#> 22 180500 15208 15208      4 1.0000000     2     2    5.398114    5.353893
#> 23 200400 10568 13690      4 1.2954201     7     3    3.751136    4.819489
#> 24 172100 12600 12600      4 1.0000000     3     4    4.472399    4.435761
#> 25 170200 12200 12209      4 1.0007377     4     5    4.330418    4.298111
#> 26 201200 10860 10860      4 1.0000000     5     6    3.854782    3.823203
#> 27 171900 10730 10726      4 0.9996272     6     7    3.808638    3.776029
#> 28  23100 21518 21518      5 1.0000000     1     1    6.017355    6.001428
#> 29 190200 10765 19292      5 1.7921040     9     2    3.010355    5.380591
#> 30  23500 11878 16748      5 1.4100017     5     3    3.321598    4.671062
#> 31  42700 16127 15973      5 0.9904508     2     4    4.509800    4.454913
#> 32  23000 15531 13287      5 0.8555148     3     5    4.343133    3.705780
#> 33 190300 12229 12229      5 1.0000000     4     6    3.419752    3.410701
#> 34  50200 11379 11379      5 1.0000000     6     7    3.182056    3.173634
#> 35  41200 11316 11316      5 1.0000000     7     8    3.164438    3.156063
#> 36  40300 11234  3739      5 0.3328289     8    32    3.141508    1.042817