Source code for sgis.geopandas_tools.point_operations

"""Functions for point geometries."""

import numpy as np
import pandas as pd
from geopandas import GeoDataFrame
from geopandas import GeoSeries
from shapely import distance
from shapely import union_all
from shapely.ops import nearest_points

from ..geopandas_tools.geometry_types import get_geom_type
from ..geopandas_tools.geometry_types import to_single_geom_type
from ..geopandas_tools.polygon_operations import PolygonsAsRings


[docs] def snap_within_distance( points: GeoDataFrame | GeoSeries, to: GeoDataFrame | GeoSeries, max_distance: int | float, *, distance_col: str | None = None, ) -> GeoDataFrame | GeoSeries: """Snaps points to nearest geometry if within given distance. It takes a GeoDataFrame of points and snaps them to the nearest geometry in a second GeoDataFrame if the snap distance is less than 'max_distance'. Adds a distance column if specified. Args: points: The GeoDataFrame of points to snap. to: The GeoDataFrame to snap to. max_distance: The maximum distance to snap to. distance_col: Name of column with the snap distance. Defaults to 'snap_distance'. Set to None to not get any distance column. This will make the function a bit faster. Returns: A GeoDataFrame or GeoSeries with the points snapped to the nearest point in the 'to' GeoDataFrame or GeoSeries. Notes: If there are geometries equally close to the points, one geometry will be chosen as the snap geometry. This will usually only happen with constructed data like grids or in the examples below. The snap point might be in between vertices of lines and polygons. Convert the 'to' geometries to multipoint before snapping if the snap points should be vertices. Examples: --------- Create som points. >>> from sgis import snap_within_distance, to_gdf >>> points = to_gdf([(0, 0), (1, 1)]) >>> points geometry 0 POINT (0.00000 0.00000) 1 POINT (1.00000 1.00000) >>> to = to_gdf([(2, 2), (3, 3)]) >>> to geometry 0 POINT (2.00000 2.00000) 1 POINT (3.00000 3.00000) Snap 'points' to closest geometry in 'to' if distance is less 1, 2 and 3. >>> snap_within_distance(points, to, 1) geometry snap_distance 0 POINT (0.00000 0.00000) <NA> 1 POINT (1.00000 1.00000) <NA> >>> snap_within_distance(points, to, 2) geometry snap_distance 0 POINT (0.00000 0.00000) <NA> 1 POINT (2.00000 2.00000) 1.414214 >>> snap_within_distance(points, to, 3) geometry snap_distance 0 POINT (2.00000 2.00000) 2.828427 1 POINT (2.00000 2.00000) 1.414214 """ to = _polygons_to_rings(to) if not distance_col and not isinstance(points, GeoDataFrame): return _shapely_snap( points=points, to=to, max_distance=max_distance, ) elif not isinstance(points, GeoDataFrame): points = points.to_frame() copied = points.copy() copied.geometry = _shapely_snap( points=copied.geometry.values, to=to, max_distance=max_distance, ) if distance_col: copied[distance_col] = copied.distance(points) copied[distance_col] = np.where( copied[distance_col] == 0, pd.NA, copied[distance_col] ) return copied
[docs] def snap_all( points: GeoDataFrame | GeoSeries, to: GeoDataFrame | GeoSeries, *, distance_col: str | None = None, ) -> GeoDataFrame | GeoSeries: """Snaps points to the nearest geometry. It takes a GeoDataFrame of points and snaps them to the nearest geometry in a second GeoDataFrame. Adds a distance column if specified. Args: points: The GeoDataFrame of points to snap. to: The GeoDataFrame to snap to. distance_col: Name of column with the snap distance. Defaults to None. Returns: A GeoDataFrame or GeoSeries with the points snapped to the nearest point in the 'to' GeoDataFrame or GeoSeries. Notes: If there are geometries equally close to the points, one geometry will be chosen as the snap geometry. This will usually only happen with constructed data like grids or in the examples below. The snap point might be in between vertices of lines and polygons. Convert the 'to' geometries to multipoint before snapping if the snap points should be vertices. Examples: --------- Create som points. >>> from sgis import snap_all, to_gdf >>> points = to_gdf([(0, 0), (1, 1)]) >>> points geometry 0 POINT (0.00000 0.00000) 1 POINT (1.00000 1.00000) >>> to = to_gdf([(2, 2), (3, 3)]) >>> to["snap_idx"] = to.index >>> to geometry snap_idx 0 POINT (2.00000 2.00000) 0 1 POINT (3.00000 3.00000) 1 Snap all points to closest geometry in 'to'. >>> snap_all(points, to) geometry snap_distance 0 POINT (2.00000 2.00000) 2.828427 1 POINT (2.00000 2.00000) 1.414214 """ to = _polygons_to_rings(to) if not isinstance(points, GeoDataFrame): return _shapely_snap( points=points, to=to, max_distance=None, ) copied = points.copy() copied.geometry = _shapely_snap( points=copied.geometry.values, to=to, max_distance=None, ) if distance_col: copied[distance_col] = copied.distance(points) copied[distance_col] = np.where( copied[distance_col] == 0, pd.NA, copied[distance_col] ) return copied
def _polygons_to_rings(gdf: GeoDataFrame) -> GeoDataFrame: if get_geom_type(gdf) == "polygon": return PolygonsAsRings(gdf).get_rings() if get_geom_type(gdf) != "mixed": return gdf gdf_points = to_single_geom_type(gdf, "point") gdf_lines = to_single_geom_type(gdf, "line") gdf_polys = PolygonsAsRings(to_single_geom_type(gdf, "polygon")).get_rings() return pd.concat([gdf_points, gdf_lines, gdf_polys]) def _shapely_snap( points: np.ndarray | GeoSeries, to: GeoSeries | GeoDataFrame, max_distance: int | float | None = None, ) -> GeoSeries: try: unioned = union_all(to.geometry.values) except AttributeError: unioned = union_all(to) nearest = nearest_points(points, unioned)[1] if not max_distance: return nearest distances = distance(points, nearest) snapped = np.where( distances <= max_distance, nearest, points, ) if isinstance(points, GeoSeries): return GeoSeries(points, crs=points.crs, index=points.index, name=points.name) return points.__class__(snapped)