Skip to contents

1. Introduction

Do you have a Norwegian data set with codes for Standard Industrial Classification that you want to find out what they mean? Or data with Norwegian municipality numbers and no names? Or perhaps you want to convert English standard occupations into Ny Norsk for a figure. These are tasks which the R package klassR can help you with.

Statistics Norway’s KLASS is a central database of classifications and code lists. An API makes it easy to fetch these standards in different computing environments. klassR provides an easy interface to fetch and apply these in R.

For Statistic Norway employees, the package is installed on most of our platforms. For others, it can be installed from CRAN with:

CRAN is R’s central repository for thousands of useful packages. More information on the requirements for klassR can be found on CRAN

To use the function in klassR the package must be called each time a new R session is started. This can be done using:

2. Search for a classification

To fetch a classification from KLASS you need the unique classification number. This can be found in the URL of the KLASS website or you can search for it in R using one of the following functions.

List all classifications

The function list_klass will fetch a list of all classifications. It returns the classification name (klass_name), number (klass_nr) and the classification family it belongs to (klass_family). The classification type (klass_type) is also shown which indicates whether it is a classification or code list.

klass_name klass_nr klass_family klass_type
Standard for yrkesklassifisering 7 1 Klassifikasjon
Standard for skadeforsikring bransje 155 2 Klassifikasjon
Standard for kjønn 2 3 Klassifikasjon
Standard for gruppering av familier 17 3 Klassifikasjon
Standard for sivilstand 19 3 Klassifikasjon
Standard for gruppering av husholdninger 37 3 Klassifikasjon

Code lists are classifications that used for national and internal (Statistics Norway) publications. These can be included in the list using the codelist parameter

list_klass(codelists = TRUE)
klass_name klass_nr klass_family klass_type
Standard for yrkesklassifisering 7 1 Klassifikasjon
Kodeliste for yrkeskatalogen, basert på STYRK 98 145 1 Kodeliste
Kodeliste for arbeidstid (hel-/deltid) 149 1 Kodeliste
Kodeliste for arbeidsmarkedsstatus 161 1 Kodeliste
Kodeliste for arbeidsgiveravgiftstype 162 1 Kodeliste
Kodeliste for delpopulasjon for lønn og sysselsetting 163 1 Kodeliste

Search for a classification using a keyword

You can also search for a classification by a keyword using the search_klass function. The first parameter here is the query to search for.

search_klass(query = "ARENA")
klass_name klass_nr
Classification of type of building /cadastre 31
Classification of land use and land cover 118

Again, to include code lists in the search this should be specified

search_klass(query = "ARENA", codelists = TRUE)
klass_name klass_nr
Kodeliste for ARENA as_ytelse 394
Kodeliste for ARENA Tiltak 386
Kodeliste for ARENA as_f (arbeidssøkerstatus_fingruppe ) 396
Kodeliste for ARENA as_gr (arbeidssøkerstatus grovgruppe) 395
Kodeliste for ARENA as_stat (arbeidssøkerstatus, aktivitet og ytelse) 393
Classification of type of building /cadastre 31
Classification of land use and land cover 118
Kodeliste for Interkommunale selskap 625
Codelist for Intermunicipal companies 625

Sometimes a classification or code list will appear several times. This is due to that it occurs several times in different langauges in the database.

3. Fetch a classification

To fetch a complete classification, use the get_klass function together with the unique identifier. For example, to fetch the Standard Industrial Classifications (KLASS number 6) we run:

industry <- get_klass(6)
head(industry)
code parentCode level name
01 A 2 Jordbruk og tjenester tilknyttet jordbruk, jakt og viltstell
01.1 01 3 Dyrking av ettårige vekster
01.11 01.1 4 Dyrking av korn (unntatt ris), belgvekster og oljeholdige vekster
01.110 01.11 5 Dyrking av korn (unntatt ris), belgvekster og oljeholdige vekster
01.12 01.1 4 Dyrking av ris
01.120 01.12 5 Dyrking av ris

Level

Classifications are often organised in a heirachical way. In the example above, the Standard Industrial Classifications have different values for level. To fetch a specific level, use the output_level parameter. For example, to fetch only the top level Standard Industrial Classification codes we use:

industry <- get_klass(6, output_level = 1)
head(industry)
code parentCode level name
A NA 1 Jordbruk, skogbruk og fiske
B NA 1 Bergverksdrift og utvinning
C NA 1 Industri
D NA 1 Elektrisitets-, gass-, damp- og varmtvannsforsyning
E NA 1 Vannforsyning, avløps- og renovasjonsvirksomhet
F NA 1 Bygge- og anleggsvirksomhet

Language

In the above examples we have seen that the names are returned in Norwegian (Bokmål). However, many of the classification in KLASS are in multiple languages. The output language can be specified as Bokmål (“nb”), Nynorsk (“nn”) or English (“en”) using the language parameter. Note: all 3 languages are not available for all classifcations.

industry <- get_klass(6, output_level = 1, language = "en")
head(industry)
code parentCode level name
A NA 1 Agriculture, forestry and fishing
B NA 1 Mining and quarrying
C NA 1 Manufacturing
D NA 1 Electricity, gas, steam and air conditioning supply
E NA 1 Water supply; sewerage, waste management and remediation activities
F NA 1 Construction

Output format

The standard output style is ‘long’ where all levels of classifications are listed down. An alternative format can be chosen using the parameter output_style='wide'. This will give only one row per detailed classification with the codes and names of the higher/broader levels given as variables.

industry <- get_klass(6, output_style = "wide", language = "en")
head(industry, 2)
code5 name5 code4 name4 code3 name3 code2 name2 code1 name1
4 01.110 Growing of cereals (except rice), leguminous crops and oil seeds 01.11 Growing of cereals (except rice), leguminous crops and oil seeds 01.1 Growing of non-perennial crops 01 Crop and animal production, hunting and related service activities A Agriculture, forestry and fishing
6 01.120 Growing of rice 01.12 Growing of rice 01.1 Growing of non-perennial crops 01 Crop and animal production, hunting and related service activities A Agriculture, forestry and fishing

Notes

Some classifications have additional notes that can be fetched with the classification. These can be included in the data using the option notes = T.

industry <- get_klass(6, notes = T)
head(industry, 2)
code parentCode level name notes
01 A 2 Jordbruk og tjenester tilknyttet jordbruk, jakt og viltstell Inkluderer: Denne næringen omfatter to basisaktiviteter: produksjon av vegetabilske og animalske produkter, jordbruk, dyrking av genetisk modifiserte vekster og oppdrett av genetisk modifiserte dyr. Både dyrking av vekster på friland og i veksthus inngår Inkluderer også: Omfatter også tjenester tilknyttet jordbruk, jakt og fangst Ekskluderer: Grunnarbeid, f.eks. anlegg av jordterrasser, drenering o.l. grupperes under næringshovedområde: F Bygge- og anleggsvirksomhet. Kjøpere og andelslag engasjert i markedsføring av jordbruksprodukter grupperes under næringshovedområde: G Varehandel, reparasjon av motorvogner. Stell og vedlikehold av landskap grupperes under: 81.30 Beplantning av hager og parkanlegg
01.1 01 3 Dyrking av ettårige vekster Inkluderer: Omfatter dyrking av ettårige vekster, dvs. planter som ikke varer i mer enn to vekstsesonger Inkluderer også: Omfatter også dyrking av ettårige vekster med henblikk på produksjon av såfrø og såkorn

4. Applying a classification

If you have a data set and want to apply a classification to a variable this is possible to do with apply_klass. This can be used to get the name of a variable which is in code form for example.

There is a built in test data set in klassR called klassdata. It contains fictitious persons with sex, education level, municipality numbers, industry classification for workplace and occupation.

data(klassdata)
head(klassdata)
ID sex education kommune kommune2 nace5 occupation
1 2 2799 0706 706 47710 5132
2 2 5620 1567 1567 86902 NA
3 1 4010 1903 1903 41200 4177
4 1 1799 1003 1003 84120 3114
5 2 NA 0806 806 87102 2411
6 1 5621 0301 301 88911 8141

We can use apply_klass to create a variable for the municipality names (classification number 131) for the persons based on the codes. We specify the vector of codes as the first parameter followed by the unique classification number.

klassdata$kommune_names <- apply_klass(klassdata$kommune,
  classification = 131
)
head(klassdata)
ID sex education kommune kommune2 nace5 occupation kommune_names
1 2 2799 0706 706 47710 5132 Sandefjord
2 2 5620 1567 1567 86902 NA Rindal
3 1 4010 1903 1903 41200 4177 Harstad
4 1 1799 1003 1003 84120 3114 Farsund
5 2 NA 0806 806 87102 2411 Skien
6 1 5621 0301 301 88911 8141 Oslo

Again, the language and output_level can be specified.

5. Working with dates

Classifications will often change over time. The KLASS database considers this and older classifications can be fetched using the date parameter.

Specify a specific date

Fetching or using a classification at a specific time point can be done using the date parameter and specifying the date for which the version of classification applies. The date format should be in the form “yyyy-mm-dd”, for example “2022-05-27” for the 27th May, 2022.

There have been many changes to the regions in Norway (classification number 106) over the past few years. We can see this by fetching the classifications for these at different times

get_klass(106, date = "2019-01-01")
code parentCode level name
1 NA 1 Oslo og Akershus
2 NA 1 Hedmark og Oppland
3 NA 1 Sør-Østlandet
4 NA 1 Agder og Rogaland
5 NA 1 Vestlandet
6 NA 1 Trøndelag
7 NA 1 Nord-Norge
9 NA 1 Uoppgitt
get_klass(106, date = "2020-01-01")
code parentCode level name
1 NA 1 Oslo og Viken
2 NA 1 Innlandet
3 NA 1 Agder og Sør-Østlandet
4 NA 1 Vestlandet
5 NA 1 Trøndelag
6 NA 1 Nord-Norge
9 NA 1 Uoppgitt

Time intervals

Sometime it may be useful to fetch all codes over a period of time. We can do this by specifing two dates as a vector in the date paramter.

The following code fetched Norwegian regional codes between 1st January 2019 to the 1st January 2020. There are 26 different codes that show both old and newer names.

get_klass(106, date = c("2019-01-01", "2020-01-01"))
code parentCode level name validFromInRequestedRange validToInRequestedRange
1 NA 1 Oslo og Akershus 2018-01-01 2020-01-01
1 NA 1 Oslo og Viken 2020-01-01 2020-01-02
2 NA 1 Innlandet 2020-01-01 2020-01-02
2 NA 1 Hedmark og Oppland 2018-01-01 2020-01-01
3 NA 1 Agder og Sør-Østlandet 2020-01-01 2020-01-02
3 NA 1 Sør-Østlandet 2018-01-01 2020-01-01
4 NA 1 Vestlandet 2020-01-01 2020-01-02
4 NA 1 Agder og Rogaland 2018-01-01 2020-01-01
5 NA 1 Vestlandet 2018-01-01 2020-01-01
5 NA 1 Trøndelag 2020-01-01 2020-01-02
6 NA 1 Trøndelag 2018-01-01 2020-01-01
6 NA 1 Nord-Norge 2020-01-01 2020-01-02
7 NA 1 Nord-Norge 2018-01-01 2020-01-01
9 NA 1 Uoppgitt 2018-01-01 2020-01-02

Changes in time

To fetch only the changes in a time period rather than all codes we can specify correspond=TRUE allong with the time interval we are interested in.

get_klass(106,
  date = c("2020-01-01", "2019-01-01"),
  correspond = TRUE
)
sourceCode sourceName targetCode targetName changeOccurred
NA NA 1 Oslo og Akershus 2020-01-01
NA NA 3 Sør-Østlandet 2020-01-01
NA NA 4 Agder og Rogaland 2020-01-01
NA NA 5 Vestlandet 2020-01-01
1 Oslo og Viken NA NA 2020-01-01
2 Innlandet 2 Hedmark og Oppland 2020-01-01
3 Agder og Sør-Østlandet NA NA 2020-01-01
4 Vestlandet NA NA 2020-01-01
5 Trøndelag 6 Trøndelag 2020-01-01
6 Nord-Norge 7 Nord-Norge 2020-01-01

The table returned is a correspondents in codes and/or names in the time interval specified. The sourceCode and sourceName refer to the original name and coding. The targetCode and targetName refer to the newer code and name. Notice there is not a simple 1:1 correspondence between all of the regions. Here the municipality number would be needed to map the changes more accurately.

Future classification

Classification that are valid in the future are also included in KLASS. They can be fetched out by specifying the future date. A message will be shown to indicate that this is a future classification. No additional parameters need to be specified.

6. Correspondence tables

In addition to small changes in time, some classifications will change completely and a correspondence table is then defined within the KLASS database. These can be fetched or applied using get_klass and apply_klass functions together with the correspond parameter which should give the unique classification number to convert into.

To fetch a correspondence table between municipality codes (131) and greater regional codes (106) we can run:

get_klass(131, correspond = 106, date = "2020-01-01")
sourceCode sourceName targetCode targetName
0301 Oslo 1 Oslo og Viken
3001 Halden 1 Oslo og Viken
3002 Moss 1 Oslo og Viken
3003 Sarpsborg 1 Oslo og Viken
3004 Fredrikstad 1 Oslo og Viken
3005 Drammen 1 Oslo og Viken

We can apply this correspondence between municipality and region in our example data set using apply_klass.

klassdata$region <- apply_klass(klassdata$kommune,
  classification = 131,
  correspond = 106,
  date = "2020-01-01"
)
klassdata
ID sex education kommune kommune2 nace5 occupation kommune_names region
1 2 2799 0706 706 47710 5132 Sandefjord NA
2 2 5620 1567 1567 86902 NA Rindal NA
3 1 4010 1903 1903 41200 4177 Harstad NA
4 1 1799 1003 1003 84120 3114 Farsund NA
5 2 NA 0806 806 87102 2411 Skien NA
6 1 5621 0301 301 88911 8141 Oslo Oslo og Viken

7. Variants

It is also possible to fetch a variant of a classification. You need to provide both the classification number and the variant number.

get_klass(6, variant = 1616, date = "2021-01-02")
code parentCode level name
01 01-03 2 Jordbruk og tjenester tilknyttet jordbruk, jakt og viltstell
01-03 NA 1 Jordbruk, skogbruk og fiske
01.1 01 3 Dyrking av ettårige vekster
01.11 01.1 4 Dyrking av korn (unntatt ris), belgvekster og oljeholdige vekster
01.110 01.11 5 Dyrking av korn (unntatt ris), belgvekster og oljeholdige vekster
01.12 01.1 4 Dyrking av ris