Calculation of the estimate for a price index
CalcInd.RdCalculation of a price index
Arguments
- data
- The dataset 
- baseVar
- The variable name for the base goods price. 
- pVar
- The variable name for the goods price. 
- type
- The type of index to calculate. Choose from: 'carli', 'dutot', 'jevons'. 
- groupVar
- The variable used for grouping observations - sometimes called the elementary group 
- consumVar
- The variable used for grouping elementary groups. This may be the publishing level. 
- wVar
- The variable used to weight the elementary groups up to the consumer publishing level. 
Value
The estimates for the index are returned as a vector of length equal to the number of groups (in groupVar or consumVar if specified).
Examples
{
data(priceData)
# Calculate index for consumer groups
CalcInd(data = priceData, baseVar = "b1", pVar = "p1", groupVar = "varenr", wVar = "weight", 
  consumVar = "coicop", type = "dutot")
CalcInd(data = priceData, baseVar = "b1", pVar = "p1", groupVar = "varenr", wVar = "weight", 
  consumVar = "coicop", type = "carli")
CalcInd(data = priceData, baseVar = "b1", pVar = "p1", groupVar = "varenr", wVar = "weight", 
  consumVar = "coicop", type = "jevons")
  
# Calculate index for elemenatry groups (weighted)
CalcInd(data = priceData, baseVar = "b1", pVar = "p1", groupVar = "varenr", wVar = "weight", 
   type = "dutot")
   
   }
#> Warning: Elementary group weights did not add to one and have been scaled.
#> Warning: Elementary group weights did not add to one and have been scaled.
#> Warning: Elementary group weights did not add to one and have been scaled.
#> Warning: No consumer group variable was specified so an index was calculated for each elementary group.
#> Warning: Elementary group weights did not add to one and have been scaled.
#>         1         2         3         4         5         6         7         8 
#> 1.0491782 0.9916579 1.0919232 0.9971484 0.9776819 1.0122949 1.0082979 1.0410994 
#>         9        10        11        12        13        14        15        16 
#> 1.0657426 1.0458119 1.0126660 1.0087542 1.0119236 1.0202207 1.0154042 1.0204284 
#>        17        18        19        20        21        22        23        24 
#> 1.0404285 1.0635197 1.0343509 0.9839625 1.0591687 1.0296146 1.0179432 1.0114293 
#>        25        26        27        28        29        30        31        32 
#> 0.9980075 1.0325678 1.0184376 0.9917827 1.0438475 1.0516548 1.1019312 1.0255544 
#>        33        34        35        36        37        38        39        40 
#> 1.0059274 1.0195331 1.0264037 1.0193352 0.9949706 1.0335269 1.0005686 1.0757601 
#>        41        42        43        44        45        46        47        48 
#> 1.0841688 0.9949837 0.9997077 1.0276529 1.0164630 1.0287131 1.0475356 1.0274997 
#>        49        50        51        52        53        54        55        56 
#> 1.0186174 1.0312737 1.0722388 1.0139797 1.0168422 1.0754973 1.0071958 1.0202791 
#>        57        58        59        60        61        62        63        64 
#> 1.0026775 1.0058940 1.0030017 0.9997709 0.9799183 1.0478942 1.0110590 1.0115428 
#>        65        66        67        68        69        70        71        72 
#> 1.0739428 0.9794139 1.0212139 0.9870189 1.0317518 0.9650201 1.0614352 1.0221492 
#>        73        74        75        76        77        78        79        80 
#> 1.0274920 1.0415765 1.0500053 1.0021974 1.0667718 1.0605561 1.0751474 1.0336029 
#>        81        82        83        84        85        86        87        88 
#> 1.0863649 1.0437152 1.0501207 1.0057534 1.0676503 1.0302636 1.0008981 1.0675389 
#>        89        90        91        92        93        94        95        96 
#> 0.9959739 1.0268511 1.0201997 0.9777202 1.0279413 1.0009408 1.0264877 1.0103826 
#>        97        98        99       100       101       102       103       104 
#> 1.0170851 1.0384248 1.0000014 1.0177277 1.0345633 1.0300957 1.0476841 1.0164684 
#>       105       106       107       108       109       110       111       112 
#> 1.0127264 1.0475748 1.0351660 1.0249665 1.0114083 1.0502433 1.0598351 1.0119547 
#>       113       114       115       116       117       118       119       120 
#> 1.0299265 1.0200079 1.0427289 0.9906708 1.0518309 1.0123277 1.0134508 1.0079136 
#>       121       122       123       124       125       126       127       128 
#> 1.0058585 1.0632656 1.0373929 0.9685996 1.0243814 1.0172798 1.0434409 0.9756649 
#>       129       130       131       132       133       134       135       136 
#> 1.0363835 1.0958327 1.0206910 0.9865309 0.9908110 1.0040474 0.9931275 1.0179996 
#>       137       138       139       140       141       142       143       144 
#> 1.0079795 1.0078089 1.0476088 1.0340241 1.0201028 1.0562831 1.0297616 1.0270815 
#>       145       146       147       148       149       150       151       152 
#> 1.0314082 1.0641822 1.0495536 1.0333891 1.0183344 1.0253208 1.0093552 1.0100153 
#>       153       154       155       156       157       158       159       160 
#> 1.0308649 1.0048242 1.0614685 1.0775324 0.9815208 1.0292993 0.9982024 1.0133232 
#>       161       162       163       164       165       166       167       168 
#> 1.0129391 1.0301208 1.0049818 1.0209796 1.0605804 0.9603525 0.9858467 1.0418124 
#>       169       170       171       172       173       174       175       176 
#> 1.0218097 1.0433452 1.0616003 1.0282483 1.0462104 0.9881764 1.0256537 1.0233769 
#>       177       178       179       180       181       182       183       184 
#> 1.0605085 1.0214452 1.0091499 1.0175753 1.0171524 0.9930452 1.0530682 1.0687364 
#>       185       186       187       188       189       190       191       192 
#> 1.0602363 1.0094292 1.0511469 1.0330998 1.0204593 1.0404494 1.0349803 0.9897180 
#>       193       194       195       196       197       198       199       200 
#> 1.0027196 1.0410686 1.0322500 1.0577304 1.0199610 1.0255261 0.9869663 1.0227391