Skip to contents

Vignettes are long form documentation commonly included in packages. Because they are part of the distribution of the package, they need to be as compact as possible. The html_vignette output type provides a custom style sheet (and tweaks some options) to ensure that the resulting html is as small as possible. The html_vignette format:

  • Never uses retina figures
  • Has a smaller default figure size
  • Uses a custom CSS stylesheet instead of the default Twitter Bootstrap style

Vignette Info

Note the various macros within the vignette section of the metadata block above. These are required in order to instruct R how to build the vignette. Note that you should change the title field and the \VignetteIndexEntry to match the title of your vignette.

Styles

The html_vignette template includes a basic CSS theme. To override this theme you can specify your own CSS in the document metadata as follows:

output: 
  rmarkdown::html_vignette:
    css: mystyles.css

Figures

The figure sizes have been customised so that you can easily put two images side-by-side.

plot(1:10)
plot(10:1)

You can enable figure captions by fig_caption: yes in YAML:

output:
  rmarkdown::html_vignette:
    fig_caption: yes

Then you can use the chunk option fig.cap = "Your figure caption." in knitr.

More Examples

You can write math expressions, e.g. \(Y = X\beta + \epsilon\), footnotes1, and tables, e.g. using knitr::kable().

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4

Also a quote using >:

“He who gives up [code] safety for [code] speed deserves neither.” (via)

library(SSBpris)
data("priceData")

CalcInd(data=priceData, baseVar="b1", pVar="p1", type="jevons", groupVar="varenr", consumVar = NULL, wVar = "weight") 
#> Warning: No consumer group variable was specified so an index was calculated
#> for each elementary group.
#> Warning in CalcInd(data = priceData, baseVar = "b1", pVar = "p1", type =
#> "jevons", : Elementary group weights did not add to one and have been scaled.
#>         1         2         3         4         5         6         7         8 
#> 1.0539505 1.0028772 1.0944981 1.0017560 0.9845511 1.0005522 1.0014880 1.0398922 
#>         9        10        11        12        13        14        15        16 
#> 1.0545919 1.0530359 1.0276294 1.0120950 1.0061017 1.0121247 1.0022978 1.0188527 
#>        17        18        19        20        21        22        23        24 
#> 1.0360861 1.0644728 1.0324028 1.0145528 1.0625093 1.0192284 1.0299098 1.0189841 
#>        25        26        27        28        29        30        31        32 
#> 0.9964447 1.0430734 1.0307777 0.9880650 1.0394796 1.0360856 1.0960219 1.0236226 
#>        33        34        35        36        37        38        39        40 
#> 1.0311001 1.0157865 1.0306689 1.0233371 1.0278152 1.0466457 1.0223706 1.0788976 
#>        41        42        43        44        45        46        47        48 
#> 1.0864876 0.9914069 1.0179040 1.0298613 1.0271920 1.0313625 1.0509045 1.0289209 
#>        49        50        51        52        53        54        55        56 
#> 1.0307649 1.0298606 1.0625053 1.0154815 1.0093457 1.0714008 1.0087565 1.0273193 
#>        57        58        59        60        61        62        63        64 
#> 1.0178380 0.9972983 1.0046590 0.9994301 0.9719945 1.0546761 1.0081769 1.0098887 
#>        65        66        67        68        69        70        71        72 
#> 1.0343937 0.9877617 1.0183837 0.9909766 1.0258743 0.9737955 1.0565840 1.0367297 
#>        73        74        75        76        77        78        79        80 
#> 1.0224960 1.0186353 1.0393530 1.0156496 1.0486500 1.0626645 1.0634039 1.0248403 
#>        81        82        83        84        85        86        87        88 
#> 1.0868674 1.0488213 1.0641034 1.0046891 1.0643506 1.0129695 0.9961668 1.0573619 
#>        89        90        91        92        93        94        95        96 
#> 1.0051264 1.0261694 1.0258682 0.9795391 1.0346499 0.9998584 1.0464673 1.0198447 
#>        97        98        99       100       101       102       103       104 
#> 1.0197537 1.0522087 1.0061814 1.0184880 1.0249874 1.0283376 1.0272750 1.0159400 
#>       105       106       107       108       109       110       111       112 
#> 1.0046354 1.0215354 1.0361772 1.0391133 1.0097634 1.0677518 1.0396020 1.0037629 
#>       113       114       115       116       117       118       119       120 
#> 1.0341543 1.0341299 1.0262806 0.9841818 1.0553283 1.0220326 1.0191662 1.0181769 
#>       121       122       123       124       125       126       127       128 
#> 1.0102090 1.0563444 1.0408178 0.9738287 1.0232065 1.0218697 1.0474010 0.9925945 
#>       129       130       131       132       133       134       135       136 
#> 1.0309587 1.0960107 1.0343723 0.9974898 0.9897213 1.0104255 0.9962156 1.0122075 
#>       137       138       139       140       141       142       143       144 
#> 1.0148058 0.9999690 1.0212295 1.0302462 1.0315783 1.0517064 1.0377130 1.0255911 
#>       145       146       147       148       149       150       151       152 
#> 1.0258608 1.0595503 1.0511051 1.0273948 1.0145604 1.0188839 1.0136995 0.9921676 
#>       153       154       155       156       157       158       159       160 
#> 1.0116946 1.0207098 1.0613060 1.0549144 0.9799509 1.0451236 1.0163969 1.0093682 
#>       161       162       163       164       165       166       167       168 
#> 1.0140566 1.0232423 1.0161983 1.0184514 1.0540262 0.9592681 1.0042335 1.0292417 
#>       169       170       171       172       173       174       175       176 
#> 1.0395368 1.0371178 1.0645367 1.0048243 1.0518922 0.9931518 1.0246264 1.0154316 
#>       177       178       179       180       181       182       183       184 
#> 1.0526112 1.0019241 1.0136677 1.0207241 1.0167715 1.0053618 1.0537007 1.0443670 
#>       185       186       187       188       189       190       191       192 
#> 1.0462701 1.0210060 1.0513857 1.0504464 1.0164743 1.0181593 1.0339258 0.9974444 
#>       193       194       195       196       197       198       199       200 
#> 1.0050735 1.0355457 1.0077574 1.0348762 1.0256120 1.0356277 0.9915530 1.0139649